Multi-Stage Approval Implementation Guide

Overview

This guide implements a multi-stage approval system where:

e Approvals must be sequential within a stage
e Only current approver can see and act on documents

e Template users can view approval status but cannot approve/reject

e Final approver triggers the external API

Step 1: Database Migration for Approval Tracking

Create a new migration to track approval progress:

php

// database/migrations/create_approval_progress_table.php

<?php

use llluminate\Database\Migrations\Migration;
use llluminate\Database\Schema\Blueprint;

use llluminate\Support\Facades\Schema;

class CreateApprovalProgressTable extends Migration
{

public function up()

{

Schema::create('approval_progress', function (Blueprint $table) {
$table->id();
$table->string(‘'doc_num”);
$table->string('wdd_code");
$table->string('draft_entry');
$table->integer('stage_id’);
$table->integer(‘current_approver_user_id");
$table->integer(‘current_approver_sequence')->default(1);
$table->enum('status’, ['pending’, ‘approved’, ‘rejected'])->default('pending");
$table->text(‘remarks')->nullable();
$table->integer(‘approved_by')->nullable();
$table->timestamp(‘approved_at’)->nullable();
$table->json(‘approval_history')->nullable(); // Store approval chain

$table->timestamps();
$table->unique(['doc_num’, ‘wdd_code', 'draft_entry);

$table->foreign('stage_id")->references('id')->on('stages’);

$table->foreign(‘current_approver_user_id')->references('id')->on('user’);

public function down()

{

Schema:droplfExists(‘approval_progress’);

Step 2: Create Approval Progress Model

php

// app/Models/ApprovalProgress.php
<?php

namespace App\Models;
use llluminate\Database\Eloquent\Model;

class ApprovalProgress extends Model

{

protected $table = 'approval_progress’;

protected $fillable = [
‘doc_num’, ‘wdd_code', 'draft_entry', 'stage_id",
‘current_approver_user_id', 'current_approver_sequence’,

'status’, 'remarks', ‘approved_by', ‘approved_at', ‘approval_history'

protected $casts = [
‘approval_history' => ‘array’,
‘approved_at' => 'datetime'’

public function stage()

{

return $this->belongsTo(Stage:class, 'stage_id’);

public function currentApprover()

{

return $this->belongsTo(User:class, ‘current_approver_user_id’);

public function approvedBy()
{

return $this->belongsTo(User:class, ‘approved_by'");

Step 3: Create Required Models

php

// app/Models/Stage.php
<?php

namespace App\Models;
use llluminate\Database\Eloquent\Model;

class Stage extends Model

{
protected $table = 'stages’;

protected $fillable = [

'stage_name', 'stage_description', 'no_of_approval_required’, 'no_of_rejection_required'

public function authorizers()

{
return $this->hasMany(StageAuthorizer:class, 'stage_ID");

// app/Models/StageAuthorizer.php
<?php

namespace App\Models;

use llluminate\Database\Eloquent\Model;

class StageAuthorizer extends Model

{
protected $table = 'stages_authorizers’;
protected $fillable = ['stage_ID", 'user_ID'];
public function stage()

{

return $this->belongsTo(Stage:class, 'stage_ID");

public function user()

{

return $this->belongsTo(User:class, 'user_ID’);

// app/Models/ApprovalTemplateUser.php

<?php

namespace App\Models;

use llluminate\Database\Eloquent\Model;

class ApprovalTemplateUser extends Model

{
protected $table = 'approval_template_users’;
protected $fillable = ['approval_template_ID', 'user_ID'];
public function user()

{

return $this->belongsTo(User:class, 'user_ID");

Step 4: Create Approval Service

php

// app/Services/ApprovalService.php
<?php

namespace App\Services;

use App\Models\ApprovalProgress;

use App\Models\StageAuthorizer;

use App\Models\ApprovalTemplateUser;
use llluminate\Support\Facades\DB;

use llluminate\Support\Facades\Http;
use llluminate\Support\Facades\Log;

class ApprovalService
{
public function initializeApprovalProcess($documentData, $stageld = 1)
{
// Get first approver for the stage
$firstApprover = StageAuthorizer:where('stage_ID', $stageld)
->orderBy('id")
->first();

if (I$firstApprover) {
throw new \Exception("No approvers found for stage {$stageld}");

return ApprovalProgress::updateOrCreate(
[
'‘doc_num' => $documentData['doc_num'],
'wdd_code' => $documentData['wdd_code'],

‘draft_entry' => $documentData['draft_entry]

'stage_id' => $stageld,

‘current_approver_user_id' => $firstApprover->user_ID,
‘current_approver_sequence' => 1,

'status’ => 'pending’,

‘approval_history' => []

public function processApproval($documentData, $userld, $remarks = null)

{
DB::beginTransaction();

try {

$progress = ApprovalProgress:where('doc_num', $documentData['doc_num'])
->where('wdd_code', $documentData['wdd_code'])
->where('draft_entry’, $documentData['draft_entry'])
->first();

if (I$progress) {
// Initialize if not exists
$progress = $this->initializeApprovalProcess($documentData);

// Check if current user is the expected approver
if ($progress->current_approver_user_id != $userld) {

throw new \Exception("You are not authorized to approve this document at this stage");

// Add to approval history
$history = $progress->approval_history ?? [];
$history[] = [
'user_id' => $userld,
‘user_name' => auth()->user()->userName,
'sequence’ => $progress->current_approver_sequence,
‘action' => 'approved,
'remarks' => $remarks,
‘timestamp' => now()

// Get next approver in sequence

$nextApprover = StageAuthorizer:where('stage_ID', $progress->stage_id)
->orderBy('id")
->offset($progress->current_approver_sequence)
->first();

if ($nextApprover) {
// Move to next approver
$progress->update([
‘current_approver_user_id' => $nextApprover->user_ID,
'current_approver_sequence' => $progress->current_approver_sequence + 1,
‘approval_history' => $history
i
} else {
// Last approver - mark as approved and call external API
$progress->update([
'status' => 'approved’,
‘approved_by' => $userld,
‘approved_at' => now(),
‘approval_history' => $history
)X

// Call external API for final approval
$this-> callExternalApprovalAPI($documentData);

DB::commit();

return $progress;

} catch (\Exception $e) {
DB::rollback();
Log:error("Approval process failed: " . $e->getMessage());
throw $e;

public function processRejection($documentData, $userld, $remarks)

{
DB::beginTransaction();

try {
$progress = ApprovalProgress:where('doc_num’, $documentData['doc_num’])

->where('wdd_code', $documentData['wdd_code')
->where('draft_entry', $documentData['draft_entry'])
->first();

if (I$progress) {
throw new \Exception("Approval process not found");

// Check if current user is the expected approver
if ($progress->current_approver_user_id != $userld) {
throw new \Exception("You are not authorized to reject this document");

// Add to approval history
$history = $progress->approval_history ?? [];
$history[] = [
'user_id' => $userld,
‘user_name' => auth()->user()->userName,
'sequence’ => $progress->current_approver_sequence,
‘action' => 'rejected’,
'remarks' => $remarks,

‘timestamp' => now()

$progress->update([

'status' => 'rejected’,

‘approved_by' => $userld,

‘approved_at' => now(),

‘approval_history' => $history
)

// Call external API for rejection

$this- > callExternalRejectionAPI($documentData);

DB:commit();

return $progress;

} catch (\Exception $e) {
DB:rollback();
Log:error("Rejection process failed: " . $e->getMessage());
throw $e;

private function callExternalApprovalAPI($documentData)
{
$response = Http:withHeaders([
'WddCode' => $documentData['wdd_code'],
'DraftEntry' => $documentData['draft_entry'],
'SAPID' => auth()->user()->sap_usercode,
'SAPIDNAME' => auth()->user()->userName
1)->post('http://103.73.190.42:7024/api/ApprovedRequestPostDoc');

if (!$response->successful()) {

throw new \Exception("External approval API call failed");

return $response->json();

private function callExternalRejectionAPI($documentData)

{
$response = Http:withHeaders([
'WddCode' => $documentData['wdd_code'],
'DraftEntry' => $documentData['draft_entry']
1)->post('http://103.73.190.42:7024/api/RejectRequest’);

if (!$response->successful()) {

throw new \Exception("External rejection API call failed");

return $response->json();

public function isTemplateUser($userld)

{

return ApprovalTemplateUser:where('user_ID', $userld)->exists();

public function canUserApprove($documentData, $userld)
{
$progress = ApprovalProgress:where('doc_num’, $documentData['doc_num'])
->where('wdd_code', $documentData['wdd_code')
->where('draft_entry’, $documentData['draft_entry'])
->first();

if ({$progress) {
// Check if user s first approver
$firstApprover = StageAuthorizer:where('stage_ID", 1)
->orderBy('id")
->first();
return $firstApprover &8& $firstApprover->user_ID == $userld;

return $progress->current_approver_user_id == $userld && $progress->status == 'pending’;

public function getApprovalStatus($documentData)
{
$progress = ApprovalProgress:where('doc_num', $documentData['doc_num'])
->where('wdd_code', $documentData['wdd_code'])
->where('draft_entry’, $documentData['draft_entry'])
->with(‘currentApprover')
->first();

if ({$progress) {
// Get first approver
$firstApprover = StageAuthorizer:where('stage_ID', 1)
->with(‘'user')
->orderBy('id")
->first();

return [

‘current_approver_name' => $firstApprover->user->userName ?? ‘Unknown’,

'status’ => 'Pending'

return [
‘current_approver_name' => $progress->currentApprover->userName ?? ‘Unknown’,

'status' => ucfirst($progress->status)

Step 5: Update Controller

php

// Update your existing controller method

public function viewAplnvoice()

{
$apiUrl = 'http://103.73.190.42:7024/api/GetApprovalDetails’;
$headers = ['DocType: 187;

$ch = curl_init($apiUrl);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

$response = curl_exec($ch);
curl_close($ch);

$data['content'] = [];
$user = Auth:user();
$approvalService = new \App\Services\ApprovalService();

if ($response) {
$decoded = json_decode($response, true);
$allData = isset($decoded['data’]) ? $decoded['data’] : $decoded;

if (Suser && $user->role ID == 1) {
$data['content'] = $allData;

} else {
// Filter data based on user permissions
$filteredData = [;

foreach ($allData as $item) {
$documentData = [
'‘doc_num' => $item['DocNum’],
'wdd_code' => $item['WddCode'],
‘draft_entry' => $item['DraftEntry']

// Initialize approval process if not exists
$approvalService->initializeApprovalProcess($documentData);

// Check if user can see this document
if ($approvalService->isTemplateUser($user->id)) {
// Template users can see all documents
$item['approval_status'] = $approvalService->getApprovalStatus($documentData);
$filteredData[] = $item;
} else if ($approvalService->canUserApprove($documentData, $user->id)) {
// Only current approver can see and act
$filteredData[] = $item;
} else if (isset($item['SAPID']) && $item['SAPID'] == $user->sap_usercode) {

// Original SAP user can always see their documents
$filteredData[] = $item;

$data['content'] = $filteredData;

$data['is_template_user'] = $approvalService->isTemplateUser($user->id);

return view('apmanagement:view-ap-invoice', compact('data'));

// Add new methods for approval/rejection
public function approveDocument(Request $request)
{

$approvalService = new \App\Services\ApprovalService();

try {
$documentData = [
‘doc_num' => $request->doc_no,
'‘wdd_code' => $request->wdd_code,
'draft_entry' => $request->draft_entry

$progress = $approvalService->processApproval(
$documentData,
auth()->user()->id,

$request->remark

return response()->json([
'success' => true,
'message’ => 'Document approved successfully’,
‘data’ => $progress

)%

} catch (\Exception $e) {
return response()->json([
'success' => false,
'message’ => $e->getMessage()
1, 400);

public function rejectDocument(Request $request)

$approvalService = new \App\Services\ApprovalService();

try {
$documentData = [
‘doc_num' => $request->doc_no,
'‘wdd_code' => $request->wdd_code,
'draft_entry' => $request->draft_entry

$progress = $approvalService->processRejection(
$documentData,
auth()->user()->id,

$request->remark

return response()->json([
'success' => true,
'message’ => 'Document rejected successfully’,
'data’ => $progress

)

} catch (\Exception $e) {
return response()->json([
'success' => false,
'message’ => $e->getMessage()
1, 400);

Step 6: Update Blade Template

blade

{{-- Update the table header --}}
<thead>
<tr>
<th data-toggle="true">Sr.No</th>
<th data-toggle="true">Doc. No</th>
<th data-toggle="true">User Code</th>
<th data-toggle="true">Doc. Date</th>
<th data-toggle="true">Customer/Vendor Code</th>
<th data-toggle="true">Total Amount</th>
<th data-toggle="true">Approval Type</th>

@if($data['is_template_user'])
<th data-toggle="true">Approver Name</th>
<th data-toggle="true">Status</th>

@endif

@if('$data['is_template_user?)
<th data-toggle="true">Action</th>
@endif
</tr>
</thead>

{{-- Update the table body --}}
<tbody id="assignUserData'>
@foreach($data['content'] as $cnt)

@php
// Your existing PDF and attachment logic here
$pdfUrl = null;

$attachments = [J;
// ... existing logic ...
@endphp

<tr>
<td class="srNoteditable">{{ $loop->iteration }}</td>
<td>{{ $cnt['DocNum’] }}</td>
<td>{{ $cnt['SAPIDNAME'] ?? 'NA' }}</td>
<td>{{ date('d-m-Y", strtotime(str_replace('/", '-', $cnt['Creation_Date']))) }}</td>
<td>{{ $cnt['CardName' . ' - . $cnt['CardCode'] }}</td>
<td>{{ number_format((float)$cnt['DocTotal], 2) }}</td>
<td>{{ $cnt['ApprovalType'] ?? 'NA' }}</td>

@if($datal'is_template_user")
<td>{{ $cnt['approval_status']['current_approver_name'] ?? 'N/A' }}</td>
<td>
<span class="badge badge-{{ $cnt['approval_status']['status’] == 'Approved' ? 'success' : ($cnt['approval_ste
{ $cnt['approval_status']['status'] ?? 'Pending' }}

</td>
@endif

@if('$data['is_template_user'])
<td class="d-flex align-items-center gap-1">
{{-- Your existing PDF and attachment icons --}}
@if ($pdfurl)

<button type="button" class="btn btn-sm btn-outline-secondary" >
<i class="fas fa-file-alt text-danger"> </i>
</button>

@else
<button type="button" class="btn btn-sm btn-outline-secondary” disabled title="No PDF Available">
<i class="fas fa-file-alt text-muted"> </i>
</button>
@endif

{{-- Attachment Icon --}}
<div class="position-relative attachment-icon-wrapper">
<button type="button" class="btn btn-sm btn-outline-secondary toggle-attachments" title="Attachmen
<i class="fas fa-paperclip text-secondary"> </i>
</button>
<div class="hover-icons text-center">
@forelse ($attachments as $url)

<i class="fas fa-file-archive text-warning"></i>

@empty
<small class="text-muted">No Attachments</small>
@endforelse
</div>

</div>

{{-- Approve & Reject Buttons --}}
<button type="button" class="btn btn-sm btn-outline-success m-1 approve-btn" title="Approve"
data-docno="{{ $cnt['DocNum’] }}"
data-wddcode="{{ $cnt['WddCode'] }}"
data-draftentry="{{ $cnt['DraftEntry'] }}">
<i class="fas fa-thumbs-up"></i>
</button>
<button type="button" class="btn btn-sm btn-outline-danger m-1 reject-btn" title="Reject"
data-docno="{{ $cnt['DocNum’] }}"
data-wddcode="{{ $cnt['WddCode'] }}"
data-draftentry="{{ $cnt['DraftEntry"] }}">

<i class="fas fa-thumbs-down"> </i>

</button>
</td>
@endif
</tr>
@endforeach
</tbody>

Step 7: Update JavaScript

javascript

// Update the approve form submit handler
$(‘#approveForm').submit(function (e) {

e.preventDefault();

var button = $(‘#approveForm button[type="submit"]");
button.prop(‘disabled’, true).text('Approving...");

const payload = {
doc_no: $(‘#approveDocNo').val(),
wdd_code: $(‘#approveWddCode').val(),
draft_entry: $(#approveDraftEntry").val(),
remark: $(‘#approveRemark’).val(),
_token: {{ csrf_token() }}'

$.ajax({
url: "{{ route(‘approve.document’) }}", // Add this route
type: 'POST’,
data: payload,
success: function (response) {
if (response.success) {
alert('Document processed successfully!’);
$(‘#approveRemarkModal').modal('hide’);
location.reload();
} else {

alert(‘Error: ' + response.message);

2
error: function (xhr) {
alert('Error: ' + xhr.responseJSON.message);
13
complete: function () {
button.prop(‘disabled’, false).text('Approve’);

// Update the reject form submit handler
$(‘#rejectForm’).submit(function (e) {
e.preventDefault();

var button = $(‘#rejectForm button[type="submit"]");
button.prop('disabled’, true).text('Rejecting...”);

const payload = {
doc_no: $(‘#rejectDocNo").val(),

wdd_code: $(‘#rejectWddCode").val(),
draft_entry: $(‘#rejectDraftEntry').val(),
remark: $(‘#rejectRemark’).val(),
_token: {{ csrf_token() }}'

$.ajax({
url: "{{ route('reject.document’) }}", // Add this route
type: 'POST’,
data: payload,
success: function (response) {
if (response.success) {
alert('Document rejected successfully!’);
$(‘#rejectRemarkModal’).modal('hide’);
location.reload();
} else {

alert('Error: ' + response.message);

b

error: function (xhr) {
alert(‘Error: ' + xhr.responseJSON.message);

3
complete: function () {
button.prop('disabled’, false).text('Reject’);

Step 8: Add Routes

php

// Add these routes to your routes file
Route::post('/approve-document’, [YourController:class, ‘approveDocument'’])->name(‘approve.document’);

Route:post('/reject-document’, [YourController:class, ‘rejectDocument])->name('reject.document’);

Step 9: CSS for Template Users

Css

.badge-success { background-color: #28a745; }
.badge-danger { background-color; #dc3545; }
badge-warning { background-color: #ffc107; color: #212529; }

Key Features Implemented:

1. Sequential Approval: Users must approve in order within each stage

2. Visibility Control: Only current approver can see/act on documents

3. Template User View: Special columns for monitoring users

4. External API Integration: Calls approval/rejection APIs at appropriate times
5. Audit Trail: Maintains history of all approval actions

6. Flexible Stage Management: Easily configure different approval stages

Testing Steps:
1. Run migrations to create the approval_progress table
2. Test with Vaibhav login - should see documents requiring approval
3. Approve as Vaibhav - document should move to Kalpak
4. Login as Kalpak - should see the document
5. Login as Kedar/Nitin - should see status columns
6. Test rejection at any stage - should call rejection APl immediately
7. Test final approval - should call approval API

This implementation provides a robust multi-stage approval system that meets all your requirements

while maintaining data integrity and proper API integration.

